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ABSTRACT

A fully Sinc-Galerkin method for the numerical recovery of spatially varying diffusion

coefficients in linear parabolic partial differential equations is presented. Because the pa-

rameter recovery problems are inherently ill-posed, an output error criterion in conjunction

with Tikhonov regularization is used to formulate them as infinite-dimensional minimization

problems. The forward problems are discretized with a sinc basis in both the spatial and

temporal domains thus yielding an approximate solution which displays an exponential con-

vergence rate and is valid on the infinite time interval. The minimization problems are then

solved via a quasi-Newton/trust region algorithm. The L-curve technique for determining

an appropriate value of the regularization parameter is briefly discussed, and numerical ex-

amples are given which demonstrate the applicability of the method both for problems with

noise-free data as well as for those whose data contains white noise.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1 Introduction

In this paper, a fully Sinc-Galerkin method is introduced for the numerical recovery of

variable diffusion coefficients in linear parabolic partial differential equations. To illustrate

the method, consider the problem of estimating the spatially varying parameter p(x) in the

diffusion equation

_.(p)u- at O-x =f(x,t), 0<x<l t>0

u(O,t) = u(1,t) = 0, t > 0 (1.1)

u(x,0) = 0, 0<x<l

_ lq=l,'",nq j_+.given measurements of the data at the points {(zp, oqjjp=_,...,p in (0, 1) × As noted in

[1], problems of this type arise in applications ranging from physiological modeling to sea

sediment analysis.

For many applications, it is physically reasonable to assume that p is continuous on [0, 1]

and to let the admissible parameter set Q be defined by

Q = {p • Hi(0,1): p(x) >_ p0 > 0}.

With this definition, the existence of a unique solution u to the forward problem can be

obtained on any fixed time interval, (0, r], r > 0, for f sufficiently smooth.

The objective of the parameter recovery problem is to choose p* E Q so that the solution

u* of (1.1) corresponding to p* agrees with the true state _. In general however, the true

state fi is not known and measurements are taken instead from an observation space Z. In

this paper, the data are taken to be point evaluations and the observation space Z is defined

to be Z = _"p'"q. The observation operator C : C((0, 1) × (0, r]) -4 Z is then given by

C¢ q----|_..._nq= (1.2)

The "idealized" recovery problem may then be formulated as follows: determine p E Q so

that

Cu(.,.,p) = d



/

where a_is used to denote the data. Since the forward problem is well-posed, the parameter

recovery problem may be formulated as

X:(p) = d (1.3)

where the nonlinear operator/U is defined by

_(p) = C_-l(p)f.

The problem (1.3) is impractical to solve for several reasons. As indicated in [12], the

problem is ill-posed in the sense that solutions p (provided they exist) may not depend

continuously on the data d_ Hence, discretized versions of this problem are likely to be highly

ill-conditioned. Consequently, some sort of regularization (i.e., stabilization) is required to

obtain an accurate approximation for p.

The regularization technique that is used is Tikhonov regularization [19] and the problem

(1.3) is replaced by the minimization problem

_To(p) (1.4)

where the Tikhonov functional is

1

_(p) - _{llX:(p) - rill _ + aY(p)}.

Here ct > 0 is a regularization parameter, which controls the tradeoff between goodness

of fit to the data and stability. The penalty functional if(p) provides stability and allows

the inclusion of a priori information about the true parameter p*. Since the parameter is

assumed to be "smooth" in the sense that p E Hi(O, 1), the penalty functional is taken to

be the norm

Y(p) = Ilpll - fol '(z)]2v(z) dx + e f0'[pCz)l v(x)dx. (1.5)

The parameter e is of the order 10 -8 and the weight v is taken to be the positive function

v(x) = x(1 - x). The reasons for weighting the integral as well as including the second

term and enforcing if(p) to be strictly positive will be discussed in the fourth section of this

paper. By using arguments similar to those in [8] and [15] and assuming that K_(p) is one to

one, it can be shown that with this definition for if(p), the solutions p,, to (1.4) converge as
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the regularization parametera _ 0 and as the perturbations in the data and operator tend

to zero.

Due to the infinite dimensionality of Q and that of the state space, the problem (1.4)

is an infinite-dimensional minimization problem. In order to develop a practical numerical

scheme, the problem must be replaced by a sequence of finite-dimensional problems; that

is, one must approximate the operator K: and minimize the functional To over a finite-

dimensional admissible subspace of Q.

The evaluation of K:(p) requires the solution of the partial differential equation (1.1).

Similar PDE's must be solved to obtain the components of the derivative K:'(p). The con-

struction of an approximate solution to these forward problems commonly begins with a

Galerkin discretization of the spatial variable with time-dependent coefficients. This yields a

system of ordinary differential equations which is solved via differencing techniques. Due to

stability constraints on the discrete evolution operator, low-order methods with small time

steps are often required to obtain accurate approximations. Moreover, this time-stepping

must be repeated at each step in the minimization of (1.4). A final difficulty lies in the need

to interpolate at data points which do not coincide with the nodes of the ODE solver.

In contrast, the method of this work implements a Galerkin scheme in time as welt as

space thus bypassing many of the difficulties associated with time-stepping methods in the

context of inverse problems. This possibility was first explored in [12]. In contrast to the

methods of that work however, both the spatial and temporal basis functions are taken to

be compositions of sine functions with suitable conformal maps.

By discretizing the forward problem in this manner, the optimal exponential convergence

rate is exhibited throughout the infinite time domain, even in the presence of boundary

singularities. The validity and exponential convergence rate of the approximate solution

throughout all time is especially important in those problems in which the data is sampled

at large temporal values tq. Furthermore, the sine quadrature rules yield coefficient matrices

which are efficiently constructed for the forward problem and easily updated when the for-

ward techniques are employed in a parameter recovery scheme. The efficiency of the inverse

scheme is further augmented by the fact that the component matrices used in formulating

the finite-dimenslonal penalty functional are identical to those used when constructing the
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forward coefficient matrices and hence need to be formed only once. The efficiency and

accuracy of the forward solver and the ease of formulating the penalty functional are then

manifested in the inverse algorithm for a large class of problems.

The foundations of the Sinc-Galerkin method and the fundamental quadrature rules are

described in Section 2. A thorough review of sinc function properties can be found in [17] and

[18]. In the third section of this paper, the Sinc-Galerkin system for the forward problem is

constructed and implementation details are discussed. The section closes with the discussion

of a very robust and accurate algorithm for solving the resulting algebraic system. Section 4

includes the finite-dimensional minimization problem with the discussion centering around

the construction of the various components of the Tikhonov functional. By taking advantage

of sinc function properties, efficient routines for approximating the nonlinear operator/C(p)

and the penalty functional J(p) are developed. In the next section, a quasi-Newton/trust

region scheme is outlined for solving the finite-dimensional minimization problem. The paper

concludes with a section containing numerical examples. Of the many examples tested, those

discussed in this section best exhibit the features necessary for the practical implementation

of the Sinc-Calerkin method. A brief discussion of the Ceneralized Cross Validation (GCV)

and L-curve techniques for choosing the regularization parameter a is given at the beginning

of the section, and the applicability of these techniques in conjunction with the Sinc-Calerkin

method is demonstrated by the numerical results. Finally, results are included both from

data sets with white noise and from sets to which no noise was added. As shown in these

examples, the Sinc-Calerkin method works equally well in both cases.
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2 Sinc Function Properties

For the Sinc-Galerkin method, the basis functions are derived from the Whittaker cardinal

(sinc) function

and its translates

sin(x'z)
sine(z) _

71"X
--oo < x <co

For h* = _, three adjacent members of this sinc family (S(k,h*)(z),k = -1,0, 1) are shown

in Figure 1.
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Figure 1. ThreeAdjacent Members (S(k,h')(z),k = -1,0, 1,h* = _) of the Translated Sinc

Family

To construct basis functions on the intervals (0,1) and (0, co), respectively, consider the

conformal maps

(z)¢(z) = In _-z (2.1)



and

T(w) = In(w).

The map ¢ carriesthe eye-shapedregion

Ds = z = x + iy : arg < d <

onto the infinite strip

Ds = {_= ¢ + i_ : 171< d < 2 }.

Similarly, the map T carries the infinite wedge

Dw = {w = t + is: larg(w)l < d <_2 }

onto the strip Ds. These regions are depicted in Figure 2.

(2.2)

(2.3)

(2.4)

(2.5)

lYDt

.If

t

is

in

Ds

i !_i iili',ti !iI : !

! Figure 2. The Domains Ds, DE, and Dw.
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The sinegridpoints zk E (0, 1) in DE will be denoted xk since they are real. Similarly, the

gridpoints wk E (0, c¢) in Dw will be denoted tk. Both are inverse images of the equispaced

grid in Ds; that is,

and

e kh

xk = ¢-l(kh) - 1 + ekh (2.6)

tk = T-l(kh)= ekh. (2.7)

To simplify notation throughout the remainder of this section, the pairs ¢, DE and T, Dw

are referred to generically as X, D. It is understood that the subsequent definition, theorems,

and identities hold in either setting. Furthermore, the inverse of X is denoted by ¢.

The important class of functions for sinc interpolation and quadrature is denoted B(D)

and defined next.

Definition 2.1. Let B(D) be the class of functions F which are analytic in D, satisfy

f,_ If(z)dzl _ O, t _ -4-00
(t+L)

where L = {is : Isl < d ___ and on the boundary of D (denoted OD) satisfy

N(F) ---[ IF(z)dzl < oo.
JO D

The following theorem for functions in B(D) is found in [16].

Theorem 2.1. Let F be (0, 1) or (0, c¢) when X = ¢ or T, respectively. If F e B(D) and

zj = ¢(jh) = X-l(jh), j = 0,-I-1,-t-2,..., then for h > 0 sufficiently small

F(z)dz- h _ X,(zj)l <_ Kxe -2'_d/h. (2.8)

Theorem 2.1 illustrates the exponential convergence rate which is a trademark of the sinc

methods. There is a common occasion when it is possible to evaluate the infinite series

appearing in (2.8), namely when integrating against S(k, h) o X. In general, however, the

series must be truncated. With additional hypotheses, it is proven in [11] and [17] that the

truncation need not be at the expense of the exponential convergence.
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Theorem 2.2. Assume F E B(D) and that there ezist positive constants K, or, and t3 such

that

x'(,)

f

_< K ] e-alx(r)l'

t e-BIx(r)l,

(2.9)

Then for h sufficiently small

fr N F(zj) Ke_.M h K-aNh
F(z)dz - h _, < Kxe -2,_lh + +

j=-M Xt(ZJ) ot

(2.10)

Theorems 2.1 and 2.2 are used to establish a uniform error bound when constructing an

approximate solution to the forward second-order time-dependent problems. The application

of these quadrature theorems is facilitated by the identities

_.{1, i=p
O, i -7/:p,

(2.11)

and

]1 {0g]_=_h S(p,h) o x(z) = (-1)'-" (2.12)
,=z, (i-p)' i#p

7r 2
]1 i_-,  2.13,

6_ ) _ h 2 S(p,h) o X(Z) = (-2)(-1)i-' i ¢ p
_=_' (i - p)2 ,

which denote the evaluation at the gridpoint zi of the sinc-map compositions and their

derivatives with respect to the map X.
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3 The Forward Problem

Consider the second-order parabolic problem

Ou O(p Ou)£u(z,t) = -_ O-x (z)_-_z = f(z,t),

u(O,t) = u(1,t) = 0, t > 0

u(z,O) = O, 0<x<l.

To define the Sinc-Galerkin approximation to (3.1), let Si(z)

S_(t) = S(j, ht) o T(t), and take the basis to be {Sq _i=-M''''''N'JI=-M=,...,N, where

s,,(=,t) - s,(=)s;(t).

O<x<l, t>O

(3.1)

= S(i,h_) o ¢(z) and

The approximate solution is then defined by way of the tensor product expansion

N, N, mr = M=+N= + 1

_m.m,(_,t)=E: _C _,_S,_(x,t),
i=-M= j=-Mt

mt= Mt + Nt + l .

(3.2)

The m= .mr unknown coefficients {uq} are determined by orthogonalizing the residual with

t r_ r'f.'t q=-Mt,...,Nt
respect to the set of sinc functions t'_poqlp=-M.,...,N,. This yields the discrete Galerkin

system

for p = -M=,. • •

with the weight

(£.u,,,,,,,, - f,S_,S_) = O (3.3)

, N= and q = -Mr,..., Nt. The inner product (., .) is taken to be

(F,G) = fo °° folF(x,t)G(z,t)w(x,t)dxdt (3.4)

w(z,t) = w(z)w*(t) = (¢'(x))-½(T(t))½ . (3.5)

A thorough discussion motivating this choice of weight can be found in [10] and [13].

Because of the tensor nature of the approximate solution, the domain on which (3.1) is

posed, and the form of the inner product, the discrete system (3.3) can be formulated by

combining the discrete systems corresponding to the one-dimensional problems

6(t) = Kt) ,0 < t < ¢¢

=(0)=0
(3.6)
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and

(p(x)u'(x))'= r(x) , 0 < x < 1
(3.7)

u(0) =u(1)=O.

This latter approach also illustrates the sinc parameter selections which are needed when

implementing the method.

Continuing with (3.6), a discrete system is formed by orthogonalizing the residual

ti,,,,(t)-r(t) with respect to {S;}N_* M,. Before invoking the quadrature rules, integra-

tion by parts is used to transfer the differentiation of u onto S_V_, where again, w* =

denotes the temporal inner product weight. To guarantee that the boundary terms vanish,

it is assumed that

u(t)llm u(t) llm -- = 0.
,-.o+ vq

Finally, the resulting integrals are evaluated via (2.10) or (2.8) when possible. With respect

to (2.9), the condition

[u(t)V/_l_<L { tT, rE(O, 1)
t -6, tE[1, oo)

guarantees the boundedness necessary to truncate the infinite quadrature rule. With 3' and

specified and Mt chosen, the parameter selections

and

(3.8)

where ['] denotes the greatest integer function, balance the asymptotic quadrature errors in

(2.10) to at least O(e'-('_a'_M')½).

In many parabolic systems, it is reasonable to assume that the solution decays exponen-

tially at infinity, that is that the solution satisfies

t "Y, re(O, 1)
e -6t, te[1,e_)

10
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or, more succinctly,

lu(t)[ < Kt_+_e -_'. (3.9)

Under this supposition, Lund [11] shows that the condition (3.8) can be replaced by

N,=[_In(_M,h,)+l]. (3.10)

The selection N, in (3.10) significantly reduces the size of the discrete system with no loss

of accuracy. It is also noted that the size of the discrete system and the expected error are

dictated by the asymptotic behavior of u at the endpoints.

The discrete system for (3.6) can then be formulated as follows. Let I(0, g = 0, 1 denote

the mtx m, matrices whose qj-th entry is 6_ ) from (2.11) and (2.12) and let 7)(,/) be the di-

agonal matrix with entries _(t-M,),'" ,y(tN,). The vector of unknowns ff = [U-M,,'", UN,] T

is then related to the known vector _= [r(/-M,),' " ,r(tN,)] T by

A,_7= 7:)((T)- ½)_' (3.11)

where

A, = r-l/0, + 21] 7:)(('_)½). (3.12)[ ht

Further details concerning the derivation of the system (3.11) can be found in [10] and a

thorough analysis of the spectrum of A, is given in [3].

The preceding discussion applied to the problem (3.7) follows a similar development. The

map T of (2.2) is replaced by the map _ of (2.1) (since (3.7) is posed in the interval (0,1))

and ht is replaced by h_. Orthogonalizing the residual and two integrations by parts yields

the system

for p = -Ms,. • •

_olu(x) (x) Sp(x) 1 dX__o r(x)Sp(x) 1---__ dx (3.13)

,Nx. To guarantee that the boundary terms vanish, it is assumed that

L'pu (x)°= p. / (X)o= 0

In anticipation of the parameter recovery problem which motivates this analysis, the term

p(x) in (3.13) is expanded as a linear combination of sinc functions with two Hermite-like

11



algebraic terms added to accommodate the nonzero values of p at x = 0 and x = 1. The

finite-dimensional approximation of p then takes the form

Nz-1

pr_.(X) -- C--M.(1--X) + C_r.X+ _ CkSk(X)

- E
k_M_

k=-Mz+l
(3.14)

In the forward problem, the coefficients n,{c,}k____M. are known whereas in the corresponding

parameter recovery problem, they are unknown and are determined via methods to be dis-

cussed in Section 4. The number of basis functions used in the expansion is chosen so as to

guarantee a square coefficient matrix. This is done to simplify the implementation of the

method when applied to the PDE (3.1) of interest.

The expansion (3.14) is substituted into (3.13) and the resulting integrals are evaluated

via (2.10) or (2.8) when possible. As shown in [13], the decay condition (2.9) equates to the

lu(x)P(x)! _<L

P(x) -p(x) - p(O)(1 - z) - p(1)x.

condition

where

This may be replaced by the more stringent condition

(3.15)[u(x)P(x)l <_ Kxa+}(1 - x)_+½.

The asymptotic errors are then balanced by the choices

and

where [.] again denotes the greatest integer function. Note that if aM is an integer, this

integer can be selected for N_.

12
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With if, f', and I(0, t = 0, 1, 2, defined as before, the system for (3.6) may be written as

A(p)ff= D((¢')- })F (3.16)

where

L[-1--I(2)hi ]A(p) = + 1I(°) :D((¢')]):D(fi¢,)

(3.17)

th_[110) - :D (2z2_ 1)] :D((¢')- ½):D(ltT¢,) .

The notation _(ig¢) and _(ig¢,) denotes the diagonal matrices containing the components of

the vectors lye and ig¢, which are defined as follows. First

where g'= [C_Ms,''" , CNs] T and _ has the block structure

with

and

_L -- [(1-- X-M.),...,(1-- XN.)] T

CR= [,-M.,...,,N.f'.

Again, the m= x (m= - 2) matrix I (°) has components _0) as defined in (2.11)

-M=_<q_<N_and-M=+l_<j<Nz-1. Also,

with

tiC' = q*'c"

where

• ,=[-ri lv(¢,)i(,)i r].,.×.,..

Here i" = [1,...,1] T, "D(¢') is m, x m_,, and 1 (1) is m= x (mx - 2) with components _5_}) as

defined in (2.12).

As shown in [13], the system (3.16) yields an approximate solution which exhibits expo-

nential convergence to the solution u of (3.7). Further details concerning the derivation of

the system as well as additional quadrature hypotheses can be found in this reference.

13



The above results for the one-dimensional problems (3.6) and (3.7) can then be pieced

together to form the Sinc-Galerkin system for the time-dependent parabolic problem (3.1).

The resulting discrete system is built from the matrices At (in (3.12)) and A(p) (in (3.17))

of the one-dimensional problems. The parameter selections are still necessary and all that

remains is to asymptotically balance the resulting errors from each one-dimensional problem.

When the decay conditions (3.9) and (3.15) are combined to yield

IP(x)u(x,t)l _ Kx°+½(1 - a)_+½t _+½e-s', (3.18)

then the choices

and

ht -- h:r,

for the stepsizes and summation limits balance the asymptotic errors. If one takes d = _, then

the above choices yield an asymptotic error rate of order O (e -'v/'_-_) for the quadratures.

Given M=, N#, Mr, Nt, and h = h= = ht as defined above, the discrete system for (3.1) is

A(p)UD ((_')-½) +/P ((¢')-}) UA r = G (3.19)

where

The diagonal matrices 79 ((qg)-}) and D ((J')-½) have sizes m= × rn_ and mt × mr, respec-

tively. The m_ ×mt matrices U and F contain the unknowns {uq} and the known values

f(xi,tj).

The discrete Sinc-Galerkin system (3.19) can then be solved for U via a generalized Schur

decomposition (page 396 of [6]). As guaranteed by the results of Moler and Stewart [14],

there exist unitary matrices Q1, Z1, Q2, and Z2 such that

14



QxA(p)Z1 - p

z, = R

z,= S

*AQ2 tz2 = T

* *Gwhere P,R,S, and T are upper triangular. If Y = ZxUZ2 and C = Q1 Q2, then (3.19)

transforms to

PYT* + RYS* = C.

By comparing the k-th columns, one finds that

P _ tkjffj -4- R _ skjzTj = c*k
i=k j=k

which yields
n n

(tkkP + skkR)!Tk = gk - P _ tkjffi - R __, skj_Tj (3.20)
j=k+X j=k+l

(for convenience, it is assumed that all matrices are n × n and indexed from 1 to n). With

the assumption that the matrix (tkkP + skkR) is nonsingular, the solution to (3.20) is easily

found by recursively solving triangular systems.

Although this algorithm does require complex algebra, it is quite efficient and requires no

assumptions concerning the diagonalizability of the component matrices. It should be noted

that a "real" version of this algorithm also exists [5]. In this latter algorithm, Q1, Z1, Q2, and

Z2 are orthogonal with P, S quasi-upper triangular and R, T upper triangular. As proven

in [5], the real algorithm is extremely stable and numerical tests have indicated that the

complex algorithm described above is also robust.

15



4 The Finite-Dimensional Minimization Problem

=

As noted in the introduction, the minimization problem

where
1

r_(p) = _(IIK:(p)- ill 2+ _llpll_) (4.1)

is infinite-dimensional and hence must be replaced by a sequence of finite-dimensional prob-

lems before a viable numerical scheme may be developed.

proximating admissible parameter sets are taken to be

Q}71z

Following from (3.14), the ap-

where

pro.: pro.(*)= _ ckCk(*)
k---M:

I l-z, k=-M_

Ck(_)= &(x), -M_ + 1 < k _<N_- 1

x, k= N_:

and Sk(x) -- S(k,h_)o ¢(x),

then be formulated as

(4.2)

The associated finite-dimensional optimization problem can

min T,, (pr,,.) (4.3)
p,n: EQms

for

^ 1 ^

Ta(pm.) =-- "_ (IlK(pro.)-dll _+ allPm, ll_} • (4.4)

The approximation/_(p._) : fit m" --* JI_np_q to/C(p) is obtained by applying the point eval-

• _-,q=l_...,nq
uation operator C in (1.2) to u,_,,,,, in (3.2). If the set of observation points {(xp, tq)lp=l,...,n p

can be represented as a tensor product of spatial and temporal points, then [((p,,,) has the

representation

k(p_,) = c _o_) (4.5)

where the matrix U solves (3.19). The matrix concatenation co(U) is the vector in gP_'"'

which is obtained by successively stacking the columns of the m_ × mt matrix U. C is an

16
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(nv.nq) x (m_ "mr) evaluation matrix which can be formulated as follows. Define the n v x m:_

spatial evaluation matrix E_ to have components

[E_]p,i=Si(zp), l<p<np, -M_<i<N_

and define the nq x mt temporal evaluation matrix Et to have components

[Et]q,j = S_(tq), 1 < q < nq, -Mt < j < Nt.

Then

C = E, ® E_.

It is noted that if the set of observation points is not rectangular as described above, then

point evaluation can be done directly via (3.2). This latter option is less efficient however,

than that defined in (4.5).

The discrete penalty functional IIp.,.ll_ is formed by substituting the expansion (3.14)

into the definition (1.5). This yields

/01 /01Ilpm.ll_ = [p" (z)l%(z)dz + ¢ [pm,(x)]2v(z)dx _ eToe

where the rnx × m_ matrix Q = Qd + QI has components

Z'
and

I1[Q!I_ _ _ Ck(_)¢dx)v(_)e_, -M. _<k,¢ <_g..

The matrix entries are approximations in the sense that slnc quadrature is used to evaluate

many of the integrals.

For the choice of basis functions in (4.2), the matrix Qd is given by

Qd =

1 _dT _I
6 6

^

_d Qd --_d

_I- __dr 1-6 6

17



Integration by parts and the application of the sinc quadrature formula (2.10) yields the

(m= - 2) x (m_- 2) matrix

O_= _±1(2)
h,

where again I (2) denotes the matrix whose qj-th entry is 6_ ) from (2.13). The zeroing of all

other quadrature terms is a result of the choice v(x) = _ = x(1 - x). The (m= - 2) x 1

vector q'd has components

[¢_1_= h.(_ - 3._ + 2xI), -M. + 1 _<k _<N. - 1

and is again obtained via sine quadrature. Because I (2) is negative definite (see [16]), the

matrix Qd is nonnegative definite. The zero eigenvalue results from the fact that the first

and last columns of Q,t differ only in sign.

Direct integration and sinc quadrature are also used to obtain the matrix

Here

_lt T -_20 30

^

__1__ girT 1__30 20

where D(r/) again denotes the diagonal matrix with entries rl(z_M,,),... , rl(xN,,). The vectors

q'fz and q'1_ have components

[¢i,1k= h_(1 - _)_

and

for k = -M, + 1,..-, N= - 1. The matrix QI is strictly positive definite.

Although the matrix Q is full, it is very efficient to construct since the Toeplitz matrix

1 (2) is also needed in the forward solver. For e > 0, Q is symmetric and positive definite and

hence has a Cholesky decomposition Q = RrR where R is upper triangular. It then follows

that the penalty term lip,,,=I1_yields the quadratic form

ernrR___ IIn_II2 (4.6)

18
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where ][. ][ denotes the Euclidean norm. As will be shown in the next section, this factor-

ization admits a particularly useful diagonalization of the corresponding finite-dimensional

minimization problem. It also facilitates the plotting of the L-curve to determine a suitable

regularization parameter a (see Section 6 and [7]).

5 The Trust Region Scheme

In the discussion of this section, it is useful to highlight the dependence of the operators in

(4.4) on the unknown vector _'= [C-M,,,'" ,cN,] T (see (3.14)). Letting

A ---.4

K(_) = K(p,,,,(_)) = C co(U)

and noting (4.6), the optimization problem (4.3) may be replaced by

min T,,(_" ) (5.1)

where

T,,(g)- _-{llK(e')-rill 2 + _IIR_II2}.

To obtain a minimizer for the nonlinear functional To, a quasi-Newton/trust region scheme

is used (see [2]).

The basis for this approach is the iteration

where gk solves the constrained minimization problem

min ½{llg(_',) + K'(_',)_'k-dll' +,_lln(_ + _'k)ll _}ik E IR"s
(5.2)
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subject to I[Rgkl[ _< 6k. The trust region radius 6k is chosen so that the quadratic model

adequately reflects the behavior of T_ within the trust region; that is, Sk is chosen so that

1
T.(_*k + gk) _ _{llK(gk)+ K'(gk)gk-- dll' + alln(c5+ g_)ll'}

whenever IIn_kll< 6k. The minimization problem (5.2) is solved using an approach similar

to that in [9]. The problem is first diagonalized using the Singular Value Decomposition

(SVD). With the change of variables

the objective functional in (5.2) becomes

_{llA_- bll2+ _11_+ _][2}

where A = K'(?k)R -1, _ = d- K(gk) and _ = R_k. Let A have the SVD

A = UDV r

where U(,p.,q) ×(,p.,,d, V,,. ×,,,. are orthogonal and

/ a_, ifi=jandi<m_
[D(n,,.,,,)×,,.],,i

( O, otherwise.

Here tri denotes a singular value of A. The second change of variables

= vT_, _ = uT'_, _ = vT-e

yields the diagonalized problem

_{tlm - _,11'+ alia +min _]12}
ielRm_,

subject to Ilall-<_k.

The theory of constrained optimization is used to solve (5.3).

criterion [4], there exists a Lagrange multiplier tt >_ 0 such that

DT(D,_ - b) + a(_ + _) + tt_ = O.

(5.3)

By the Kuhn-Tucker

(5.4)

i
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From (5.4) it follows that (5.3) has a unique solution of the form

= _(I_) = {D TD + (a + I_)I}-lCDTb-a_).

If H$(O)H < d;k, then the constraint in (5.3) is not active and g = R-1V_(O) solves (5.2);

otherwise the constraint is active and the solution to (5.2) is given by g = R-1V_(/.t) where

/t >_ 0 is the unique solution to

g(_) =-I1,_(_,)11- 6k= 0. (5.5)

An approximate solution to the scalar equation (5.5) is then determined via the hook step

algorithm in [2] (see page 134). This algorithm requires both g(it) and g'(p). As shown in

[9], the function g(p) can be expanded as

g(_) = _,_]+ _ + t,) - 6_ (5.6)

when bj and _j are components of b and _, respectively. The derivatives g'(p) are easily

obtained from the form (5.6).

The trust region radius dfk in (5.3) is chosen so that T=(g ) has sufficient decrease at each

iteration so as to guarantee convergence to a local minimizer of To. This is accomplished via

the updating algorithm in [2] (page 143) with the decay requirement taken to be

T.(_k + gk)< To(_k)+ _VTo(gk)r_k

with g = 10 -4.

An important numerical issue in the implementation of the trust region scheme is the

formulation of the derivation of the operator K. Here the derivative, or Jacobian, is an

(rip. nq) x m= matrix whose v-th column is given by

[g'(g)]_ = lim l[g(_*+ T_)- K(5*)]
T--,O 1

where the standard unit vector _ has components

d;_k----/ 1 if k-v, -M=_<k_<N=[_]_
i 0 otherwise.
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In the examples that are presented in Section 6, the Jacobians were calculated with a

standard forward difference scheme. This scheme is easy to implement and accurate enough

for the purposes of the method. If further efficiency is desired, a directional derivative

scheme such as that described in [12] can be used. For this method, the trade-off for the

added efficiency is an algorithm which is more difficult to implement and a slight loss of

accuracy in some cases.

6 Implementation and Numerical Examples

The four examples reported in this section were selected from a large collection of problems

to which the Sinc-Galerkin method was applied. The results are representative of those

obtained on other sample problems.

The first example demonstrates the application of the Sinc-Galerkin method to a model

problem in which the state solution was sampled directly; that is, no external noise was added

to the data. To demonstrate the feasibility of the method for problems with noisy data,

the same problem is revisited in Example 5.2 but with pseudo-random white noise added

to the data. In Example 5.3, the parameter to be recovered has a logarithmic boundary

singularity at x = 0 while the parameter in Example 5.4 is the shifted Gaussian function

that was considered in [12]. In all four examples, the dynamics of the problem are assumed

to be modeled by (1.1) with the forcing function f(x,t) consistent with the state solution

u(x,t) = x(1 - x)sin(4rrx)t2e -t and the true diffusion parameter p. In each case, d = _ (see

(2.3) and (2.5)).
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The errors for the method are reported on the set of uniform gridpoints

u = {z0,z,,...,zl00}

zk =k_, k=0,1,...,100

(6.1)

with stepsize _ = i_" With p and p,_, denoting the true and approximate parameters

respectively, the errors are reported as

IIpu(g)ll= o  xoo Ip(zk)-

The error and convergence results are tabulated in the form .aaa-7 which represents

.aaa x 10 -'Y. All problems were run with sixteen place accuracy on a Vax 8550.

A very important practical consideration is the choice of the regularization parameter a

for a given (error contaminated) data set. One would llke to choose a so that lip - p,_ [I is

minimized, where p_ denotes the a-dependent unknown diffusion coefficient. If the error in

the data is random, then under certain conditions (see [20]) the method of Generalized Cross

Validation (GCV) yields a statistical estimate of the size of HE(p) - K:(p_)J[ which is related

to liP- po][. For Tikhonov regularization, this estimate is given by the GCV functional

IlIK(e'_) - _J2
V(a) = n

n- mx_ + a

(6.2)

where _'_ solves (5.1). Here n = nq .np denotes the number of data points and {a,} are the

singular values of the operator K'(go,)R -1. To approximate the value of a which minimizes

[Jp - p_J[, one attempts to solve the minimization problem

min V(a).
0>_o

Because the GCV method requires the singular values of K'(_'..), it is relatively expensive

to implement when m_ and n are large. A second disadvantage to this method for choosing

the regularization parameter is that the GCV plots are often very flat making it difficult to

determine a minimum value of V(a) and hence an optimal value of a (see Figure 6 in the

next section). Finally, one often has optimization settings in which the GCV hypotheses are

not satisfied.
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A secondmethod for determining the regularization parameter is to plot the norm of

the penalty functional, IIRc_ll, versusthe norm of the residual, I[g(_*_)- d II (see [7]). In

this way one can qualitatively get an idea of the compromisebetweenthe minimization of

these two quantities. The schemefor determining the "optimal" regularization parameter

consists of finding those values of a such that (llg(_'a)- d II, IIR_*_']I) lies in the "corner"

of the resulting curve, known as the L-curve. This method for choosing the regularization

parameter a is easy to apply and often gives more conclusive results than the GCV method.

Both methods are illustrated in the examples.

In all four examples, the mx x 1 initial vector _ = [.5, .5,...,.5,.5] T was used. Several

other positive startup vectors were also tried with similar results in each case. Hence the

method seems to be quite robust with respect to the choice of the initial vector.

Finally, in the examples the symbol a is used to denote both the regularization parameter

(see (5.1)) and the sinc decay parameter (see (3.18)). The use of this symbol for both

quantities is well established in the literature and thus difficult to avoid in this setting. It

should be obvious from the context, however, which quantity is being discussed and there

should be no ambiguity resulting from the dual use of this symbol. =
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Example 6.1 In this example, the true diffusion parameter is taken to be the analytic

function p(x) = 1 + sin(rrx). Since the state solution is u(z,t) = x(1 - x)sin(4rx)t2e -', the

decay condition (3.18) yields the choices c_ = fl = 2, 7 = _, and 6 = 1. The data was sampled

on a regular grid {(zp, tq)} C (0,1) × (0,2]. Nine equally spaced points zp = pAz, Ax = .1,

were taken in space and four equally spaced temporal points tq = qAt, At = .5, were

taken for a total of n = 54 data points. No noise was added so the data consisted of direct

measurements of the state solution. For varying values of the regularization parameter a, the

L-curve is plotted in Figure 3. Note that the values a = 10 -r through a = 10 -11 yield points

(llg(g,_)- d II, I[R_'_H) in the "corner" of the curve. The uniform errors for c_ = 10 -s are

reported in Table 1 with the first four columns indicating the index limits for the expansion

of the state variable and fifth column indicating the number of basis functions used in the

expansion of p,,,,. The convergence of the method is demonstrated both by the results in

the last column of Table 1 and by Figure 4 which shows the true and approximate diffusion

parameters with a = 10 -s.

8 8 10 4 17 .7414-0

16 16 21 7 33 .7648-1

24 24 39 9 49 .3111-1

Table 1. Errors on the Uniform Grid U with c_ = 10 -s in Example 6.1.
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Figure 3. The Tikhonov L-curve for Example 6.1.
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Example 6.2 Here the true parameter and state solution are the same as those in

Example 6.1, and hence p(z) - 1 + sin(rx) and u(z,t) = x(1 - x)sin(4_rx)t2e -t. The same

observation points were used but to this data however, we added a pseudo-random noise

vector • from a Gaussian distribution with mean 0 and standard deviation a chosen so that

the noise-to-signal ratio a/lldll = 0.001 (noise- 0.1% of the signal). The L-curve and GCV

curves are plotted in Figures 5 and 6, respectively. Note that the values c_ = 10 -5 through

a - 5 × 10 -s yield points (llg(/:'_)- d II, IIR_ID in the "corner" of the L-curve whereas

all values of a less than 10 -5 yield apparent minima of the GCV curve. For M_ = 16, the

uniform errors obtained with er = 10 -3, o_ = 10 -s, and c_ - 10 -9 are reported in Table 2.

Corresponding plots of the true and approximate parameters are shown in Figure 7. Note

that the "corner" value a = 10 -s provides a good choice for the regularization parameter

whereas c_ = 10 -9 is not large enough to damp out the contribution due to the smaller sin-

gular values. This latter observation can be predicted from the L-curve but less easily from

the GCV plot. Finally, the choice a = 10 -3 causes too much smoothing and information

about the parameter is lost. By comparing the results in Tables 1 and 2, it can be seen that

the error in this example with a -- 10 -e and M_ = 16 is virtually the same as the error in

Example 6.1 with a - 10 -s and Mx = 16. The results from this example demonstrate the

viability of the method for problems with noisy data.

a = 10 -3 a = 10 -e a = 10 -9

•2658 - 0 .7737 - 1 .4357 - 0

Table 2. Errors on the Uniform Grid U with M_ = 16 in Example 6.2.
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Example 6.3 The true parameter in this example is p(x) = 1 + _x + xln(x) which has a log-

arithmic singularity at x = 0. As before, the state solution is u(z, t) = z(1 - z) sin(4rx)t_e -t

and thus the decay parameters a = fl = 2, 7 3= _, and $ = 1 are consistent with the condition

(3.18). To demonstrate the method for another set of observation points, nineteen equally

spaced points xp = pAx, Az = .05, were taken in space and four equally spaced temporal

points tq = qAt, At = .5 were taken for a total of n = 72 data points. No noise was added so

the data consisted of direct measurements of the state solution. Since the L-curve was nearly

identical to that of Example 6.1, the regularization parameter was taken to be a = 10 -s.

The uniform errors for this choice are reported in Table 3 and the true and approximate pa-

rameters are shown in Figure 8. Both the table and the figure demonstrate the convergence

of the method in spite of the logarithmic singularity in the diffusion parameter.
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U,, N,, M, N, r._ IIP_(e)ll

8 8 10 4 17 1.2171-0

16 16 21 7 33 0.1330-0

24 24 39 9 49 0.7285-1

Table 3. Errors on the Uniform Grid U with a = 10 -s in Example 6.3.
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Figure 8. True and Approximate Diffusion Parameters for Example 6.3 with c_ = 10 -s
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Example 6.4 In this example,the parameter to be recoveredis the shifted Gaussianfunc-

tion p(x) = 1 + !,,-4o(_-_} When combined with the state solution, this dictates the
4 v •

choices c_ =/_ = 7 = _, and 6 = 1 for the sinc decay parameters as specified by (3.18).

Pseudo-random noise is added to the data in the manner described in Example 6.2. As

seen in Figure 9, the Tikhonov parameter values cr = 10 -5 through a = 10 -s yield points

(IIK(_',,)-rill, IIR_',_II) in the "corner" of the L-curve. For M_ = 16, the uniform errors

obtained with c_ = 10 -3, a = 10 -s, and a = 10 -_° are reported in Table 4 with correspond-

ing plots of the true and approximate parameters shown in Figure 10. As indicated by the

numerical results, the "corner" value c_ = 10 -s provides a good choice for the regularization

parameter whereas vt = 10 -z causes too much smoothing. The error contributions due to

the smaller singular values become quite apparent at a = 10 -l° thus reiterating the L-curve

observation that this Tikhonov value does not provide enough regularization or smoothing

for the problem.

IIpu(g)ll

c_ = 10 -3 c_ = 10 -s c_ = 10 -1°

.7710 - 1 .4109 - 1 .6805 - 1

Table 4. Errors on the Uniform Grid U with Mx = 16 in Example 6.4.
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